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S.B. Hansen, W.A. Isaacs, P.A. Sterne, B.G. Wilson, V. Sonnad, and 

D.A. Young  

Lawrence Livermore National Laboratory, Livermore, California, 94550 
 

The Purgatorio code [Wilson et al., JQSRT 99, 658-679 (2006)] is a new 
implementation of the Inferno model describing a spherically symmetric 
average atom embedded in a uniform plasma. Bound and continuum 
electrons are treated using a fully relativistic quantum mechanical 
description, giving the electron-thermal contribution to the equation of 
state (EOS). The free-electron density of states can also be used to 
calculate scattering cross sections for electron transport. Using the 
extended Ziman formulation, electrical conductivities are then obtained by 
convolving these transport cross sections with externally-imposed ion-ion 
structure factors. (U) 
 

Introduction 
Accurate modeling of astrophysical and laboratory plasmas requires accurate 

equation of state (EOS) data for a variety of elements over a wide range of material 
conditions, from the solid state to the rare plasma and high energy-density regimes. 
However, precise EOS measurements exist only for a restricted set of materials at select 
temperature-density points. Equation of state models which give reliable data, 
constrained by experiments, for any element at any set of conditions are needed to fill in 
the gaps between data points. 

Equation of state models typically consist of three parts, including descriptions of the 
electron-thermal and ion contributions to the EOS and a semi-empirical fit stitching these 
two contributions to the cold curve. The Purgatorio code [1] is a recent implementation of 
David Liberman’s Inferno model [2], which belongs to a family of historically successful 
ion-in-cell or neutral-pseudo-atom (NPA) approaches to the electron-thermal contribution 
to the equation of state [see, for example, Refs. 3-5].   

Purgatorio numerically solves the Dirac equation for the major and minor 
components of the bound wave functions normalized to unity over all space, with 
analytic forms employed outside of the Wigner-Seitz cell radius Rion where V(r) = 0. 
Continuum wave functions are computed on an adaptive energy grid to resolve detailed 
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information on the density of states.  Matching the numerical wave functions to analytic 
forms at Rion gives phase shifts δκ(ε), which are used in conductivity calculations. The 
energy grid, initially logarithmic, is refined to capture resonances which form in the 
continuum when bound states are destroyed by pressure ionization. Capturing the 
resonances is essential for the self-consistent calculation and is ensured either by the 
refinement described in [1] or by tracking changes in the phase shifts. 

The bound and continuum electron densities are determined by populating the wave 
functions according to their statistical weights, modulated by the Fermi distribution 
function f(ε,µ) = (1+e(ε-µ)/τ)-1, with the chemical potential µ varied to ensure neutrality: 
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The potential is determined from the 

total electron density and iterated to self-
consistency using Local Density 
Approximations (LDA) to the exchange and 
correlation potentials [6]. 

Converged values of the electron 
density and its bound and continuum 
components are given in Fig. 1(a) for Ni at 
solid density and a temperature of 1 eV. The 
bound electrons have a clear shell structure, 
as labeled on the figure, which is absent in 
the Thomas-Fermi fluid description (gray 
lines). The continuum electron distribution, 
which in the Thomas-Fermi approximation 
would be a smooth increasing function of r, 
shows a pronounced feature associated with the unbound 3d state. Figure 1(b) shows the 
density-of state like quantity X(ε) for this case, where the bound states are represented by 
delta functions at their negative-energy eigenvalues and the continuum X(ε) is given by 
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Fig. 1. Calculations for Ni at 1 eV and solid 
density (8.91 g/cm3). (a) Electron 
distributions within the Wigner-Seitz cell 
(Rion = 2.60 a.u.). The gray line is the 
distribution in the Thomas-Fermi 
approximation. (b) Bound state energy 
eigenvalues (ε < 0) and continuum X(ε)  
(ε > 0), which exhibits a resonance feature 
corresponding to the pressure-ionized 3d 
orbital. The gray line is Xideal(ε).  
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In solid-density nickel, the 3d state is pressure ionized and appears as a resonance in the 
continuum, causing a significant deviation from the equivalent quantity for free waves 
Xideal(ε) = p(1+α2ε)/(π2n). 

A non-relativistic sister code to Purgatorio, which gives results very close to those of 
Purgatorio for low-Z ions, has also been developed [7] and used to test variations in the 
model. Its results are used in some of the figures in this paper.  

In subsequent sections, we will describe a recent implementation of the extended 
Ziman formulation for electrical conductivity.  A fairly extensive range of experimental 
conductivity data exists which can be compared with the Purgatorio conductivity 
calculations and used to guide the development of the model parameters, particularly the 
definition of the average ion charge. We show some of these comparisons and give a 
discussion of their consequences along with conclusions and our plans for future work.  

 
EOS data 

The accurate treatment of continuum electrons and the stringent numerical tolerances 
in Purgatorio permit the extraction of thermodynamic quantities, such as pressure and 
entropy, through numerical differentiation of the internal energy. Prototypical results 
from Purgatorio, including the principal Hugoniots of Be and Al and pressure vs. energy 
isochors for low-density Al, have been published recently [1]. 

We focus in this section on the ion charge. Unlike other thermodynamic quantities, 
which have a unique thermodynamically consistent definition, the average ion charge can 
be computed in several ways. The most straightforward of these is to define the ion 
charge to be the total number of continuum electrons: 

εεµερπ d)(),(d)(4
00 continuum

2
continuum ∫∫

∞
== XfrrrZ ionR

 

This definition includes both the electrons in the ideal density of states, which have wave 
functions distributed throughout the material, and the “quasi-bound” electrons in the 
resonance features, whose wave functions have extensive tails but are fairly localized 
about the ion center (see Fig. 1). An alternative definition counts only the free electrons 
in the ideal density of states, excluding the population of quasi-bound or resonant states: 
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∞
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Finally, we can define the free electrons to be those on the surface of the ion sphere:  
nRRZ ionion /)(4 tot

2
WS ρπ=  

This definition largely excludes electrons in continuum resonances but can include a 
portion of any negative-energy bound states that “leak out” of the ion sphere. The 
electrons on the surface of the ion sphere are free to move between ions and can thus be 
considered extensive.  

In most cases, ZWS and Zfree are close to each other, and all three values tend to 
converge at high temperature and low density. However, at densities high enough to 
pressure ionize valence orbitals and temperatures low enough to significantly populate 
resonance states, the three quantities can differ widely: for example, in the case shown in 
Fig. 1, Zcontinuum = 10, ZWS = 2.36, and Zfree = 1.78. 
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A comparison of the three definitions of 
the free electron density with experimental 
data obtained from x-ray scattering of Be 
targets [8] is given in Fig. 2.  The low-
temperature points agree best with Zcontinuum, 
while the high temperature point agrees 
with the calculations excluding continuum 
resonances. Similar trends are seen in 
comparisons of Purgatorio calculations with 
carbon data [9]. The given figure is similar 
to Fig. 6 of Ref. 5, which shows SCAALP 
calculations that fall very near the 
Purgatorio Zcontinuum values, along with 
ACTEX [4] and NPA [3] calculations which 
follow the experimental data fairly closely 
across the given temperature range.  

 
Electrical conductivity 

A recent addition to the Purgatorio code 
is the calculation of static (direct-current) electrical conductivities. The approach follows 
the work of Rinker [10, 11] in its implementation of the extended Ziman formulation [12] 
and is informed by the works of Perrot and Dharma-Wardana [e.g. 3, 13, 14], Yuan, Sun, 
and Zheng [15], Blancard and Faussurier [5], and Johnson [16].  

The extended Ziman formulation for the electrical resistivity of liquid metals is based 
on linear response theory, where free electrons in a metal are uniformly accelerated until 
they collide with an ion and are scattered. The expression for the resistivity takes on a 
Drude-like form: 
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where nZi is the charge carrier density and τ is a relaxation time (time between scattering 
events). The relaxation time depends on the scattering cross section σ (ε) and the velocity 
distribution of the free electrons: 
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According to Rinker, the quantity Z0 is constrained on variational grounds to be identical 
to Zfree when the Boltzmann equation is valid [10], although there is no similar constraint 
on the number of charge carriers Zi. 

In the t-matrix formulation of Evans et al, the total scattering cross section σ (ε) is 
obtained by integrating the angle-dependent differential cross section dσ (p,θ)/dθ over all 
possible scattering angles θ : 
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Fig. 2. Comparison of the electron density 
in 1.85 g/cm3 Be as measured by x-ray 
scattering [8] with three different 
formulations of the calculated average ion 
charge, as described in the text. 
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where (l = κ for κ > 0 and -κ-1 for κ ≤ 0), 
Pl(cosθ) and Pl

1(cosθ) are the Legendre and 
associated Legendre polynomials, 
respectively, the relativistic dispersion 
relation p2 = ε(2 + εα2) is assumed, and the 
integration is performed over the 
momentum transfer vector q2 = 2p2[1-cosθ]. 
The phase shifts δκ(ε) are calculated by 
matching the analytic wave functions for r 
> Rion to the numerical wave functions 
inside the ion cell (see [15 and 16]). The 
integration over q is modulated by the 
structure factor S(q), which is the Fourier 
transform of the ion-ion pair correlation 
function and which will be discussed in some detail below. 

Figure 3 shows the scattering cross section for solid density Ni at a temperature of  
1 eV, along with the derivative of the Fermi function. Both quantities appear in the 
integral for the resistivity. The 3d resonance, which was prominent in the continuum 
density of states (see Fig. 1) is also clearly evident in the scattering cross section. Indeed, 
the density-of-states-like quantity X(ε) given above in terms of Pε,κ(r) and Qε,κ(r) can also 
be expressed in terms of the phase shifts: 

ε
εδ
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Resistivity calculations have a multifaceted dependence on the structure of the 
electron distribution in the average atom: there is a direct dependence on the number of 
charge carriers Zi; a fairly straightforward dependence on the average velocity of the free 
electrons (and thus the chemical potential µ) through the Fermi distribution function; and 
a strong dependence on the single-ion scattering cross section, which is directly related to 
the density of states and any associated resonance or band structure. In addition, the 
resistivity depends on the ionic structure of the plasma through the ion structure factor 
S(q). The electronic contributions can be isolated in weakly coupled plasmas at moderate 
to high temperatures and low densities, where the structure factor approaches unity at the 
dominant q values and its exact functional form has little impact on the calculations.  

Calculated resistivities for Al and Ni are given in Fig. 4 along with experimental 
values obtained by DeSilva and Katsouros in wire vaporization experiments [17]. The 
solid lines show the calculations using Zi = Zfree and the dashed lines show the results 
using Zi = Zcontinuum. At the lowest densities, the two values are nearly equal and the 
calculated resistivities agree well with the data. But as the density increases, valence 
bound states are pressure-ionized, leading to resonance structure in the continuum and 
large differences between the two definitions for the average ion charge. The effect is 
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Fig. 3. Scattering cross section (solid line) 
and εεµ ∂∂− /),(f  (dashed line) for solid-
density Ni at 1 eV. 
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larger for Ni, with its 3d resonance and ten valence electrons, than for Al, with its 3p 
resonance.  

 From Fig. 4, it appears that the 
calculations using Zi = Zcontinuum do a better 
job of describing the nonmetal to metal 
transition, which occurs in the experimental 
data near 0.1 g/cm3 for Al and 0.3 g/cm3 for 
Ni. However, using Zi = Zcontinuum introduces 
into the resistivity the rather sharp changes 
caused by pressure ionization with 
increasing density, while the experimental 
data does not bear any indication of shell 
structure. The selection Zi = Zcontinuum also 
does not universally improve agreement 
with experiment, particularly for 
calculations of resistivity near melt 
(although in such cases we are far from the 
weak coupling limit and the dependence is 
complicated by the structure factor). So far, 
we have produced results using Zi = Zfree, 
retaining as charge carriers only those 
electrons which are truly free and excluding 
those which have a high probability of 
being localized. Rinker has noted that this 
choice can provide an upper limit on the 
resistivity [11]; a firm limit on a smoothly 
varying quantity may be more useful for 
model development than a jagged 
intermediate quantity.  

 
The structure factor S(q) 

The differential cross section dσ (p,θ)/dθ is valid only for a single ion. To describe 
scattering within an extended medium, we require the structure factor S(q). The quantity 
[S(q)-1] is the Fourier transform of the ion pair correlation function g(r), which gives the 
probability of encountering an ion at a given radius. A number of researchers have 
obtained consistent structure factors in liquid metals using interatomic potentials derived 
from the electronic structure in average atom or neutral pseudo-atom models [e.g. 3, 14, 
18]. We have found that the exact shape of the structure factor is not of critical 
importance, even in the solid state limit (see below), and seek instead an approximation 
to the structure factor that preserves the broad observed dependence of resistivity with 
temperature.  

The strong and weak coupling limits of ions in an extended medium are conveniently 
delineated by the ion-ion coupling parameter )/( ion

2
iii RZ τ=Γ , with τ  the ion 

temperature in atomic units. (It seems clear that for this parameter the appropriate choice 

Fig. 4. Calculated electrical resistivities at 
0.86 eV as a function of material density for 
Al and Ni, showing the effect of different 
selections for the number of charge carriers 
Zi. The data points are from experiments by 
DeSilva and Katsouros [17] at the indicated 
temperature ranges. 
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for Zi is Zfree, since electrons in the localized quasi-bound states effectively shield ions 
from one another.)  

In weakly coupled plasmas with Γii < 1, 
the thermal energy of the ions is much 
smaller than their potential energy. As the 
temperature decreases or the density 
increases, short-range order begins to occur 
in the plasma, Γii increases, and something 
like a liquid state develops. Continuing 
these trends leads to crystallization. For the 
one-component plasma (OCP), melting 
occurs at Γii ~ 172, so that any material with 
a Γii larger than this value can be considered 
a crystalline solid. In the strongly coupled 
(quantum) limit, the ion pair correlation 
function g(r) consists of sharp peaks at 
crystal lattice sites; its transform S(q) is also 
sharply peaked. 

These qualitative comments are 
illustrated in Fig. 5, which shows structure 
factors for Γii = 10, 172, and 1000. The 
solid lines for the Γii = 10 and 172 cases 
were calculated using the fit to the OCP 
S(q) given by Young, Corey, and DeWitt 
[19]. The solid line for Γii =1000 was 
calculated using the Fourier transform of a 
g(r) composed of thermally broadened 
Gaussian peaks at the spherically averaged 
lattice sites of a fcc crystal. The dashed 
lines are the simple Debye-Hückel structure 
factors S(q) = (qrd)2/[1 + (qrd)2] with the 
Debye radius )3/( 2

i
3
ion ZRrd τ=  which are 

valid at high temperatures. In 1968, Mermin determined that Debye-Hückel gives a lower 
limit for S(q) at any temperature [20]. The gray lines in Fig. 5 are the inelastic 
components of the solid-state structure factor as described by Baiko et al. in Refs. 21and 
22 and are discussed further below. 

We have indicated on the Γii = 172 curve in Fig. 5 the locations of the value q = 2pF 
for various values of Zfree. In the zero-temperature limit, the Fermi momentum  
pF = (3π2nZfree)1/3 fixes the upper limit of the electron velocity distribution. The integral 
of the differential cross section modulated by the structure factor in resistivity 
calculations is carried out to at least 2pF. This has important consequences for the 
temperature dependence of the calculated resistivity: for metals with more than one 
valence electron, the integral over the structure factor always includes at least the first 

Fig. 5. Various structure factors S(q) as a 
function of the ion-ion coupling parameter 
Γii. Solid lines are OCP S(q) for Γii = 10 and 
172 and fcc for Γii = 1000. Gray lines are 
the inelastic components of the solid-state 
S(q) given by [21, 22] continued into the 
liquid phase. Dashed lines are Debye-
Hückel. The vertical lines on the center plot 
indicate q = 2pF, the momentum cutoff for 
integration, for various ion charges. 
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peak of S(q), regardless of the temperature. In fact, as the temperature decreases and the 
Bragg peaks narrow, the integral may capture a larger share of S(q). Since the electronic 
structure reaches a low-temperature limit beyond which the differential cross section and 
the values Zfree and Zcontinuum are constant, the effect of the changing structure factor tends 
to increase the resistivity or leave it unchanged with decreasing temperature in the solid-
state limit. But this is not at all what is experimentally observed: the resistivity of most 
solid metals decreases with temperature due to a reduction in phonon scattering at low 
temperatures.  

In an application to fully ionized but 
highly degenerate plasmas, Baiko et al. 
propose that only the inelastic component of 
the structure factor should be included in 
resistivity calculations, since the elastic 
components, which correspond to the sharp 
peaks in the structure factor, translate but do 
not scatter the free electrons [21, 22]. We 
have implemented their prescription for the 
solid state S(q) in our calculations, both 
with and without their recommended cutoff 
at the equivalent radius of the Brillouin 
zone (they set S(q) = 0 for q < qB = 
(6π2n)1/3. For the liquid phase, Baiko et al. 
use the OCP S(q) but subtract out the elastic 
components representing short-range order 
in the liquid. We have implemented both 
this option and the option of continuing 
their inelastic S(q) for the solid state into the 
liquid phase.  

Figure 6 illustrates the temperature 
dependence of the resistivity for solid 
density Al calculated using various 
formulations of S(q). Experimental points 
are given for Al at room temperature and 
melt, as well as for higher temperatures as 
measured by Milchberg [23]. At high 
temperatures, there is very little dependence on S(q) and the calculated resistivities agree 
rather well with the laser plasma data. At temperatures below 10 eV, calculations with 
different S(q) diverge. The low-temperature limit for Zfree in solid-density Al is 2, giving 
an upper limit for the integration over S(q) of 2pF = 1.61. At low temperatures, 
calculations using either the bcc or fcc S(q) sample the first elastic scattering peak (see 
Fig. 5) and thus remain constant or slightly increase with decreasing temperature, 
deviating strongly from the room temperature measurements. The behavior of the 
calculation using only the inelastic portion of the bcc S(q) [21, 22] conforms much better 
to our expectation in the solid state. Calculations using the Debye-Hückel S(q) appear to 
offer a reliable minimum value for the resistivity.  
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Fig. 6. Resistivity of solid-density 
aluminum as a function of temperature with 
various S(q). The thin dashed line uses the 
Debye-Hückel S(q). The other lines split 
into two branches at low temperatures. In 
the upper branch, fcc (black), bcc (gray) and 
OCP (bold dashed) S(q) are used. In the 
lower branch, only the inelastic portions of 
the bcc (black excluding q < qB and gray 
including all q) and OCP (bold dashed) S(q) 
are used. Data points at room temperature 
and melt are given along with laser-plasma 
data from [23] 



UNCLASSIFIED 
Proceedings of the NEDPC 2005       Document # (e.g. COPD-,COPJ-,etc.) 
 

 

Hansen, S.B., et al. 9 

UNCLASSIFIED 

 
Conclusions 

We have described the code Purgatorio, a new implementation of the Inferno model 
with a highly accurate treatment of continuum wave functions and stringent numerical 
tolerances. Purgatorio can provide the electron-thermal component of equation of state 
data for use in hydrodynamic modeling, including electrical conductivity data. The 
ability to calculate conductivity opens up a wide range of experimental data for 
comparison which can help to define ambiguous quantities such as the average ion charge 
and refine the model parameters, in particular the exchange and correlation potentials. 
Investigations into improvements to the LDA treatment of exchange and correlation 
potentials are ongoing. 
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